The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb(3+),Er(3.).
نویسندگان
چکیده
Lanthanide-doped upconverting nanoparticles (UCNPs, NaYF4:Yb(3+),Er(3+)) are well known for emitting visible photons upon absorption of two or more near-infrared (NIR) photons through energy transfer from the sensitizer (Yb(3+)) to the activator (Er(3+)). Of the visible emission bands (two green and one red band), it has been suggested that the red emission results from two competing upconversion pathways where the non-radiative relaxation occurs after the second energy transfer (pathway A, (4)I15/2 → (4)I11/2 → (4)F7/2 → (2)H11/2 → (4)S3/2 → (4)F9/2 → (4)I15/2) or between the first and the second energy transfer (pathway B, (4)I15/2 → (4)I11/2 → (4)I13/2 → (4)F9/2 → (4)I15/2). However, there has been no clear evidence or thorough analysis of the partitioning between the two pathways. We examined the spectra, power dependence, and time profiles of UCNP emission at either 980 nm or 488 nm excitation, to address which pathway is preferred. It turned out that the pathway B is predominant for the red emission over a wide range of excitation powers.
منابع مشابه
Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method: toward efficient materials with near infrared-to-near infrared upconversion emission.
Colloidal Er(3+)/Yb(3+), Tm(3+)/Yb(3+) and Ho(3+)/Yb(3+) doped CaF(2) nanoparticles have been prepared by a one-pot hydrothermal procedure and their upconversion properties have been investigated.
متن کاملDual energy converting nano-phosphors: upconversion luminescence and X-ray excited scintillation from a single composition of lanthanide-doped yttrium oxide.
We report an upconverting nanomaterial composition, [Y(2)O(3); Yb (2%), Er (1%)], that converts both X-ray and high-fluence NIR irradiation to visible light. This composition is compared to a higher Yb(3+) doped composition, [Y(2)O(3); Yb (10%), Er (1%)], that displays diminished visible X-ray scintillation, but shows enhanced red wavelength centered upconversion emission. These nanocrystals ha...
متن کاملPEG-capped, lanthanide doped GdF3 nanoparticles: luminescent and T2 contrast agents for optical and MRI multimodal imaging.
A facile method for the synthesis of water dispersible Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) doped upconverting GdF(3) nanoparticles is reported. Strong upconversion emissions are observed in the red (for Er/Yb doped) and near-infrared (for Tm/Yb doped) regions upon laser excitation at 980 nm. The PEG coating ensures a good dispersion of the system in water and reduces the radiationless de-excitation...
متن کاملSynthesis and Luminescence Properties of Water Soluble α-NaGdF4/β-NaYF4:Yb,Er Core–Shell Nanoparticles
Hexagonal phase (β) sodium rare earth tetrafluorides (NaREF4, RE = Y, Gd, Lu, et al.) are considered the ideal matrices for lanthanide (Ln) ions doped upconversion (UC) luminescence materials, because they can provide favorable crystal lattice structures for the doped luminescent Ln ions to make intensive emissions. However, the cubic phase (α) NaREF4 always preferentially forms at low reaction...
متن کاملEnhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell.
Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF4: Yb, Er based upconverting nanoparticles coated with a gold ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 20 شماره
صفحات -
تاریخ انتشار 2015